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Abstract. We use a discrete-field model for the quantum evolution of distributed
superconducting circuits to calculate the effective capacitance for a radio-frequency-SQUID
magnetometer: a large-capacitance superconducting ring containing an ultra-small-capacitance
weak link. We demonstrate that the self-capacitance of the weak link can dominate the behaviour
of the circuit.

The radio-frequency- (rf-) SQUID magnetometer is the simplest superconducting circuit
containing a non-linear circuit element (a thick superconducting ring containing a Josephson
weak link [1, 2]) and is an ideal system for studying the appearance of quantum mechanical
behaviour in macroscopic circuits (for recent reviews see [3, 4, 5, 6]). A particular series
of experiments has provided excellent evidence for the existence of discrete energy levels
in the rf-SQUID ring (corresponding to the stationary solutions of the Schrödinger equation
with a macroscopic Hamiltonian) [7]. In such a circuit, the capacitance plays the role of
an effective mass for the total magnetic flux enclosed within the ring. The appearance of
a discrete set of energy levels is therefore associated with a small capacitance (i.e. a small
‘mass’). The best agreement between the theory and experimental results comes from an
effective capacitance of aroundC ' 10−16 F [7]. This value is significantly lower than
would be expected from geometrical arguments [8], and has led to the proposal of other
models for the experimental behaviour [9]. In this paper we demonstrate that the effective
capacitance of an rf-SQUID ring can be determined by the small self-capacitance of the
weak link, even in the presence of a large mutual capacitance associated with the thick ring
structure.

It is well known that (low temperature) superconductivity is associated with a broken
gauge symmetry of the electromagnetic field [10, 11] and this can be used to construct
a distributed circuit Hamiltonian for the transverse and longitudinal fields [12]. The
main advantage of this approach is that it can be used to describe complex (spatially
distributed) circuits in a consistent manner, avoiding problems associated with the confusion
of longitudinal fields (charge–phase) and transverse fields (electric flux–magnetic flux) [5].
However, it has also been shown that this approach also leads to an additional (non-
geometric) capacitance, associated with the superconducting condensate itself [12], and
that this capacitive energy can be significant for a Josephson weak-link device [1, 2].

We start with a Lagrangian for the symmetry broken electromagnetic field. We choose
the simplest case which gives the required macroscopic behaviour [10, 12],

L =
∫

dV

[
ε0E

2 − µ−1
0 B2

2
+ N νq2

h̄2

(
φ̇ + A0

)2 − Nγ q2

h̄2 (∇φ − A)2 + aN − bN 2

2

]
(1)
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whereq = 2e; the electric fieldE = −∇A0− ∂A
∂t

and magnetic fieldB = (∇×A) are given
by the scalar and vector potentials,A0 andA; andN is non-zero inside the superconductor,
but vanishes outside. (We take the permittivity and permeability of the material to be the
same as those of free space,ε0 andµ0 respectively.) This Lagrangian can also be obtained
from the time-dependent Ginzburg–Landau model [13, 14], where the order parameter has
been expressed as8 = √N exp(iqφ/h̄) and where the number density,N , is taken to
be a smooth, static classical field (for simplicity).a andb are then found to be the usual
Ginzburg–Landau coefficients, withγ = h̄2/2me and ν = 3γ /v2

F (wherevF is the Fermi
velocity of the electrons in the (non-superconducting) material) [13, 14].

Unfortunately, not all of the fields have a conjugate momemtum. This makes the
construction of a Hamiltonian, and the subsequent imposition of canonical commutation
relations, more complicated than it might otherwise be [15]. The classical equations forA0

andN form constraints, which (together with the usual gauge constraints) must be imposed
before the fields can be quantized. Taking the variational derivative of the Lagrangian
density with respect toA0 andN , we obtain

δL
δA0

= ε0∇ ·
(

∇A0 + ∂A

∂t

)
− 2N νq2

h̄2

(
∂φ

∂t
+ A0

)
= −ε0∇ · E + ρ = 0 (2)

where the charge density is given by

ρ = −δLm

δA0
= −2N νq2

h̄2

(
∂φ

∂t
+ A0

)
(3)

and Lm is the material part of the Lagrangian density (i.e. the symmetry breaking terms
only); and

δL
δN = h̄2

4νq2

( ρ

N
)2

− γ q2

h̄2 (∇φ − A)2 + a − bN = 0 (4)

which becomesN ' a/b, if a and b are sufficiently large [13]. The first constraint
is simply Gauss’ law. The second constraint arises because we have taken the number
density to be a smooth, static classical field (neglecting the time and spatial derivatives).
Whilst this is not strictly necessary (the quantum dynamics of this degree of freedom
can also be included), the fact that the number density is often associated with topological
excitations (vortex lines) means that it would be very complicated to describe with a quantum
mechanical Hamiltonian. Provided we remain outside the regimes where we would expect
these topological excitations to occur (near the critical temperatures and at relatively high
magnetic fields), this approximation should be good.

Imposing these constraints, together with the gauge constraints for the Coulomb gauge
[15],

∇ · A = 0 (5)

and

ε0 ∇2A0 = ∇ · p (6)

(wherep = −ε0E is the momentum conjugate toA), we obtain a Hamiltonian of the form

H =
∫

dV

[
ε0E

⊥2

2
+ (∇ × A)2

2µ0
− ρ 1−1ρ

2ε0
+ 1

2

(
h̄2

2νq2

)
ρ2

N + Nγ q2

h̄2 (∇φ − A)2

]
(7)

whereE⊥ is the transverse part of the electric field and1 ≡ ∇2. The Hamiltonian contains
three fields: the two transverse electromagnetic fields (the divergenceless parts ofA) and
the symmetry breaking field (φ, identified with the longitudinal electromagnetic field); and
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their conjugate momenta,pA = −ε0E
⊥ andpφ = −ρ respectively. The first three terms

are the usual electromagnetic field energies (transverse fields and Coulomb interaction). The
last two terms are responsible for the broken symmetry, giving rise to a self-capacitance
for the superconducting condensate and the exclusion of magnetic flux in the bulk material
respectively.

We then introduce the canonical commutation relations for the fields and their conjugate
momenta, to obtain

[E⊥
i (x), Aj (y)] = ih̄

ε0
5ij δ(x − y) (8)

where5ij = δij − 1−1∂i∂j ; and

[ρ(x), ∂iφ(y)] = ih̄∂iδ(x − y). (9)

We write the second commutation relation between the charge density and the gradient of
the fieldφ, becauseφ is an angular operator (period80 = h/q) and can only appear in a
periodic function or as a derivative [16]. This is due to the requirement that the physical
charge contained within any closed surface be an integer multiple ofq = 2e, or superposition
thereof (from Gauss’ law and the quantization of real charge in the condensate). We note
that, due to the broken symmetry, the longitudinal electromagnetic field is now a real
physical field [17] (with corresponding physical excitations [10]). In a normal conductor,
the symmetry is unbroken and the longitudinal field has no physical excitations.

Given a particular geometry, using this field Hamiltonian and the corresponding
commutation relations, it should be possible to solve for all of the circuit modes of a simple
superconducting ring. In this paper, we restrict ourselves to the discussion of one simple
example: an rf-SQUID ring [2]. In this case, we can simplify consideration by assuming
that the circuit consists of a uniform circular ring (whose cross-sectional dimensions are
‘thick’ compared to the magnetic penetration depth [13], but ‘thin’ compared to the radius of
the ring [12]) which contains a point contact weak link [2]. If we further restrict ourselves
to the two lowest-energy modes of the ring, we can describe the system in terms of three
segments: two for the bulk ring and one for the weak link (see figure 1). We note that, in
contrast with the model given in [9], the Hamiltonian requires only one weak-link segment.

In this case, the appropriate Hamiltonian is given by [12]

H =
(

Q2
2

2C
(t)

2

+ 82
2

232

)
+

(
Q2

3

2C
(t)

3

+ 83
n

233

)
+ q2

2

2C22
+ q2q3

2C23
+ q2

3

2C33

+qIc3

2h̄
(83 − 1φ3)

2 + qIc2

2h̄
(82 + 1φ1 + 1φ3)

2 − h̄Ic1

q
cos

(
2π 1φ1

80

)
where the local discrete-field operators are defined by

qn =
∫

Vn

dVρ(x) (10)

1φn =
∫

Cn

dl · ∇φ(x) = φ(xn+1) − φ(xn) (11)

and

Qn = ε0

∫
SQn

dS · E⊥(x) (12)

8n =
∫

S8n

dS · B(x) =
∮

∂S8n

dl · A(x). (13)
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Figure 1. Schematic diagram of the simple radio-frequency SQUID ring; divided into three
segments, showing definitions of discrete field variables.

(The volumes (Vn), curves (Cn) and open surfaces (SQn andS8n) are shown in figure 1.)
We have used the fact that the total charge and total phase change around the ring are

constants to removeq1 = −q2 − q3 and1φ2 = m80 − 1φ1 − 1φ3 (m is an integer). We
have also assumed that the transverse fields around the weak link (given by81 and Q1)
are only very weakly coupled to the excitations of the bulk ring, so that they can also be
removed. The remaining non-zero commutation relations are then

[Q2, 82] = [Q3, 83] = ih̄ (14)

and

[q3, 1φ3] = −[q2, 1φ1] = ih̄. (15)

To obtain this Hamiltonian, we parametrize the field energies in terms of effective circuit
elements. The transverse electromagnetic fields for each segment are given by an effective
(transverse) capacitance (C(t)

n ) and a geometrical inductance (3n). The longitudinal field
energies are given in terms of two self-capacitances for the two halves of the bulk ring (C22

andC33) and one mutual capacitance (C23), but each of these will contain terms due to the
usual geometrical capacitances (from the Coulomb energy) and from the self-capacitance of
the condensate:

1

C22
= (C−1

(l) )11 − (C−1
(l) )12 − (C−1

(l) )21 + (C−1
(l) )22 + 1

C
(sc)

1

+ 1

C
(sc)

2

1

C23
= 2(C−1

(l) )11 − (C−1
(l) )12 − (C−1

(l) )21 − (C−1
(l) )13 − (C−1

(l) )31 + (C−1
(l) )23 + (C−1

(l) )32 + 2

C
(sc)

1

1

C33
= (C−1

(l) )11 − (C−1
(l) )13 − (C−1

(l) )31 + (C−1
(l) )33 + 1

C
(sc)

1

+ 1

C
(sc)

3
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whereC(l) is the effective capacitance matrix due to the Coulomb interaction, andC(sc)
n is

the self-capacitance of the condensate for thenth element. To obtain an expression for this
self-capacitance we look at the terms which couple the transverse and longitudinal fields.
The (∇φ − A)2 term in the field Hamiltonian can be rewritten as,

(∇φ − A)2 = h̄2

q2

{(
∇ + iqA

h̄

)
e(−iqφ/h̄)

}
·
{(

∇ − iqA

h̄

)
e(iqφ/h̄)

}
(16)

which becomes (for small1x)

Nγ q2(1Vn)

h̄2 (∇φ − A)2

' γNnσn

(1x)

[
2 − 2 cos

(
2π1φn

80

)
−

(
2q8n

h̄

)
sin

(
2π1φn

80

)
+ q282

n

h̄2

]
(17)

whereσn is the cross-sectional area of thenth ring segment, i.e.(1Vn) = σn(1x) and
Nn is the number density on thenth segment. This form not only produces the familiar
Josephson tunnelling terms [1, 2], it also preserves the angular nature of the longitudinal
field. For large1x (the bulk ring segments), we assume that the angular nature ofφ will
not be important and make a quadratic approximation(∇φ − A)2 ∝ (1φn − 8n)

2.
Comparing (17) to the known expression for the energy of a Josephson device (the

amplitude of the cosine term is equal to ¯hIc/q) we obtain

Icn
= qh̄Nnσn

me(1x)
(18)

whereIcn
is the critical current of thenth segment and(1xn) is its length. Combining this

with the expression forν given above, the condensate self-capacitance is given by [12],

C(sc)
n = 3qIcn

(1xn)
2

h̄v2
F

. (19)

Next, we let the critical currents for the bulk ring (Ic2 and Ic3) become very large,
so that82 ' −(1φ1 + 1φ3) and 83 ' 1φ3. Using these as constraints, we rewrite
the Hamiltonian (10) as a (classical) Lagrangian, introduce the constraints and find the
new conjugate momenta for the operators82 and 83. We then requantize the system by
imposing new canonical commutation relations.

Doing this procedure, we obtain the new conjugate momenta,

p82 = −Q2 − q2 = −Q̃2 (20)

p83 = −Q3 − q2 − q3 = −Q̃3 (21)

and making the transformation

8 = (82 + 83) Q = (Q̃2+Q̃3)

2

18 = (82 − 83) 1Q = (Q̃2−Q̃3)

2

we obtain the new Hamiltonian,

H =
[

Q2

2C
+ 82

23
− h̄Ic1

q
cos

(
2π8

80

)]
+ Q(1Q)

2C ′ +
[
(1Q)2

2C ′′ + (18)2

23

]
(22)

and commutation relations

[Q, 8] = [1Q, 18] = ih̄. (23)

The first part of (22) is the usual Hamiltonian for a lumped component rf-SQUID ring [2, 3],
involving the electric flux (Q) and the total enclosed magnetic flux (8). The last part is the
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next-highest-energy electrodynamic mode of the ring, coupled to the lowest energy mode,
via an effective capacitanceC ′. (Since the ring is uniform, we take32 = 33 = 3/2.)

From (22), we see that the capacitive energy scales are set by the three capacitances:
C, C ′ andC ′′.

C = (ad − bc)2(
d2

C ′
22

− cd
C ′

23
+ c2

C ′
33

) (24)

C ′ = (ad − bc)2(
− 2bd

C ′
22

+ (ad+bc)

C ′
23

− 2ac
C ′

33

) (25)

C ′′ = (ad − bc)2(
b2

C ′
22

− ab
C ′

23
+ a2

C ′
33

) (26)

where

a = 1 + C
(t)

3

4C23
+ C

(t)

2

2

(
1

C22
− 1

2C23

)
b = 1

2
+ C

(t)

3

2C33
+ C

(t)

2

2

(
1

2C23
− 1

C33

)

c = − C
(t)

3

4C23
+ C

(t)

2

2

(
1

C22
− 1

2C23

)
d = −1

2
− C

(t)

3

2C33
+ C

(t)

2

2

(
1

2C23
− 1

C33

)

C ′
22 =

[
1

C22
+ C

(t)

3

4C2
23

+ C
(t)

2

(
1

C22
− 1

2C23

)2
]−1

C ′
23 =

[
1

C23
+ C

(t)

3

C33C23
+ 2C

(t)

2

(
1

C22
− 1

2C23

) (
1

2C23
− 1

C33

)]−1

C ′
33 =

[
1

C33
+ C

(t)

3

C2
33

+ C
(t)

2

(
1

C33
− 1

2C23

)2
]−1

.

For the rf-SQUID structure used in the experiments under discussion [7], a macroscopic
Niobium ring (radius∼ 5 mm) containing a point-contact weak link [2], the geometrical
capacitances associated with the block structure are generallyC(l) ∼ 10−12 F [8], compared
with a self-capacitanceC(sc) ∼ 5 × 10−17–5 × 10−15 F for the weak link [12] (using
1x ∼ 0.1–1 µm, Ic ∼ 1 µA and vF ∼ 106 m s−1). Taking these values, and using an
estimate for the transverse field energy (based on a uniform, circular ring,C(t) ∼ 10−15 F
[18]), we can calculate the effective capacitances (C, C ′ andC ′′) as functions of the self-
capacitance of the weak link (C(sc)) (see figure 2). For very small-capacitance weak links,
the effective capacitance is dominated by the transverse fields and the weak-link capacitance.
This is in contrast to the situation found in normal conductors, where the large mutual
capacitance of the block would be expected to dominate the behaviour of the system [8],
and indeed, this is the case as the symmetry breaking term disappears,C(sc) → ∞.

In general, we find that the small self-capacitance of the weak link couples in series
with the capacitance due to the Coulomb term, and that this combination couples in parallel
with the effective capacitance of the transverse electric field. The precise value for the
capacitances will depend on the geometry of the block and the critical current of the weak
link, but an effective capacitance of the order of 10−15–10−16 F is not unreasonable.

In conclusion, we have taken a field theoretical model for the quantum evolution of
the superconducting condensate [12] and applied it to a particular system which is of great
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Figure 2. Effective capacitancesC (solid line), C′ (dashed line) andC′′ (crosses) for a
macroscopic rf-SQUID ring (parameters given in the text).

experimental interest: the rf-SQUID magnetometer. We have shown that the small self-
capacitance of a weak link device can dominate the behaviour of a macroscopic ring, even
in the presence of a large geometric capacitance. This result is in contrast to the behaviour
predicted in some other models for the rf-SQUID magnetometer which neglect the intrinsic
self-capacitance of the condensate [8, 9]. It is, however, in agreement with experimental
results, using very small-capacitance, point-contact weak-link devices [7].
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